Motor speech phenotype of Huntington’s disease:

A clinical biomarker in the premanifest phase

Adam Vogel PhD

Professor of Speech Neuroscience
Centre for Neuroscience of Speech, The University of Melbourne
Chief Science Officer of Redenlab Inc. Consulting or collaborating with sponsors including Retrotope, Takeda, Pfizer, Chrondrial Therapeutics, PTC, Bioelectron, SFARI
Speech vs Language

SPEECH
- Dysarthria = motor execution deficit
- Apraxia = motor planning deficit

LANGUAGE
- Aphasia = content, rules (semantics, syntax, grammar)

How we say it

What we say
What are the best features / sets to explore?

Summative

Intelligibility (how well we are understood)

Naturalness (difference between disease & healthy speakers)

Or

Individual / combination

Features describing individual or combined *speech subsystems*
Speech subsystems

Respiration – breath support
Phonation – voice
Articulation – lips & tongue
Resonance – nasality
Prosody – intonation & timing
Speech behaviors themselves tell us a lot about the speaker

Speech tasks can be:
- cognitively demanding
- motorically complex
- both

Vogel et al. Neurology 2017; Vogel et al. Speech Comm 2014
Quantification of speech subsystems

Quality: noise / turbulence / energy
- Noise (perturbation)
- Frequency & power distribution

Control: variance or precision
- Variability of pitch or loudness
- Vowel articulation
- Consonant production

Timing: rate / stability / duration
- Speech rate
- Syllable stability
- Duration of pauses
Speech and its stakeholders

Altered speech leads to meaningful change in QoL

Intelligibility/naturalness/SRQoL

Changes in speech reflect effect of compound on CNS

Speaker

Clinician

Regulators

U.S. FOOD & DRUG ADMINISTRATION

THE UNIVERSITY OF MELBOURNE
517 pts from 12 studies

Speech in PreHD characterized by impaired speech agility, phonatory dysfunction and slower speech rate

Some disagreement re nature & magnitude of speech deficits (Skodda et al. Neurology 2016; Vogel & Stout, Neurology 2017)

Relationship with cognition & pathophysiology not clear
Listening for pathology – blinded expert raters

Figure. Group comparisons on the occurrence of dysarthric speech features in PreHD, EarlyHD and controls

* = Significant difference between PreHD and control groups | ** = Significant difference between EarlyHD and control groups

*p <0.05, **p < 0.01, ***p < 0.001
Prodromal vs Presymptomatic vs Early stage HD

<table>
<thead>
<tr>
<th></th>
<th>PresymHD (n=14)</th>
<th>ProdromHD (n=18)</th>
<th>EarlyHD (n=14)</th>
<th>MidHD (n=9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean+/−SD)</td>
<td>39.2 (11.8)</td>
<td>45.1 (12.1)</td>
<td>56.6 (10.7)</td>
<td>48.7 (13.7)</td>
</tr>
<tr>
<td>Burden disease scores</td>
<td>186 (41.4)</td>
<td>340.6 (61.8)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UHDRS total motor score</td>
<td>1.2 (2.3)</td>
<td>3.1 (5.4)</td>
<td>18.1 (7.7)</td>
<td>32.7 (11.2)</td>
</tr>
<tr>
<td>Total Functional Capacity</td>
<td>12.8 (0.8)</td>
<td>12.9 (0.2)</td>
<td>10.0 (2.4)</td>
<td>6.6 (1.5)</td>
</tr>
<tr>
<td>CAG repeats</td>
<td>40.5 (1.3)</td>
<td>43.4 (2.2)</td>
<td>43.2 (4.1)</td>
<td>44.8 (5.3)</td>
</tr>
</tbody>
</table>

Premanifest HD: Disease burden scores (DBS) [DBS = age * (CAG-35.5)]. Langbehn et al. (2004).

Presymptomatic HD = DBS <250 | **Prodromal HD** = DBS ≥250.

Manifest HD: TFS (0 = complete loss of function and 13 = normal function; EarlyHD TFS = 7-13 | MidHD TFS = 4-6).

Age and sex matched controls.
Voice quality – sustained vowel
Timing – syllable repetition [papa]

Mean syllable duration

Perturbation
Timing – syllable repetition [pata]

Mean syllable rate

Perturbation
Timing – reading

Reading - Pause (mean)

Reading - Speech rate

Group comparison

PresymHD vs Control-A
ProdromalHD vs Control-B
EarlyHD vs Control-C
MidHD vs Control-D

HD
Control

**

Timing – unprepared monologue

Monologue - Pause (mean)

Monologue - Percentage of silence
Stability [pataka]

![Graph showing stability over time](image)

Perturbation

- **HD**
- **Control**

The graph compares stability over time for different groups, indicating changes in perturbation levels from baseline to 6 months.
Inter-relatedness of speech & disease features

DDK Rate vs Total Motor Score in Paired Syllable Repetition

$r = -0.66$

$p < 0.01$
Moving ahead

Composite measures of HD speech

Stability work across time frames similar to trials

Larger natural history cohort – longitudinal data

Dysarthria Impact Scale – ~6 items across 3 domains validated in HD
Clinical assessment of dysphagia in neurodegeneration (CADN): development, validity and reliability of a bedside tool for dysphagia assessment

Authors

Adam P. Vogel, Natalie Rommel, Carina Sauer, Marius Horger, Patrick Krumm, Marc Himmelbach, Matthias Synofzik

11 items (7 mins): 2 parts - case history & consumption – validated against videofluoroscopy
Collaborators & team

Prof Deb Theodoros
Prof David Copland
Dr Tony Angwin

A/Prof Amy Brodtkenn
A/Prof David Darby
Dr David Szmulewicz

A/Prof Gaby Todd

Dr Thushara Perera

Paul Kukiel
Hannah Reece
Mala Bisnadan
Prof Paul Maruff
Dr Michelle Magee
Dr Indika Udagedara

A/Prof Thanasis Tsanas

Prof Steven Lockley
Prof Olaf Bodamer

Prof Martin Delatycki
Prof Angela Morgan
A/Prof Louise Corben

Prof Marilu Gorno-Tempini
Prof Adam Boxer
Ariane Welsch

Prof Paul Maruff

Prof Mark Walterfang
Prof Denis Velakoulis

Dr Jeanette Tamplin
Dr Megan Keage
Dr Michelle Magee
Dr Ben Schultz
Hannah Reece
Dr Gustavo Noffs

Jess Chan
Courtney Lewis
Camille Paynter
Olga Birchall
Charissa Zaga
Sandra Rojas
Marja Caverle

Prof Shantha Rajaratnam
A/Prof Clare Anderson

Prof Julie Stout
Dr Scott Kolbe
Prof Ramesh Rajan
Prof Helmet Butzkueven
A/Prof Anneke van der Walt

Prof Matthys Synofzik
Prof Ludger Schöls
Lisa Stoll
Natalie Rommel
Eva-Maria Kraus
Andreas Oettinger
Funding acknowledgment
Thank you

Adam Vogel PhD
vogela@unimelb.edu.au

